INDIAN STATISTICAL INSTITUTE
 Mid-Semestral Exam
 Algebra-II
 2019-2020

Answer Question 1 and any 4 from the rest.
(1) State whether the following statements are true or false. Justify your answers.
(a) Any four vectors in \mathbb{R}^{3} are linearly dependent.
(b) The linear system of equations $A x=b$ is consistent if and only if the ranks of the matrix A and the augmented matrix $(A \mid b)$ are the same.
(c) The set $S=\{1, \sin (x), \cos (x)\}$ is a linearly independent subset of the set of all continuous functions from $[-\pi, \pi]$ to \mathbb{R} over \mathbb{R}.
(d) The set $\left\{A \in M_{n \times n}(\mathbb{R}): \operatorname{det}(A)=0\right\}$ forms a subspace of $M_{n \times n}(\mathbb{R})$.
(2) Consider the matrix

$$
A=\left[\begin{array}{ccccc}
1 & 2 & 0 & 1 & 2 \\
2 & 0 & 1 & -1 & 2 \\
1 & 1 & -1 & 1 & 0
\end{array}\right]
$$

as an element of $\mathbb{R}^{3 \times 5}$.
(a) Find a basis for the null space of A.
(b) Repeat (a) when A is considered to be a matrix over \mathbb{F}_{3}. $(10+10)$
(3) (a) Prove that if S is any linearly independent set in a vector space V, then S can be extended to get a basis of V.
(b) Find a basis of \mathbb{R}^{3} containing the vectors $(1,1,-2)^{t}$ and $(1,2,-1)^{t}$.
(c) Find the total number of subspaces of $\left(\mathbb{F}_{2}\right)^{2}$. Explain your answer.
(4) (a) Define rank of a matrix.
(b) State and prove Rank-Nullity Theorem.
(c) Show that if A is a invertible, then $\operatorname{rank}(A B)=\operatorname{rank}(B)$.

$$
(2+10+8)
$$

(5) (a) Prove that the set $\mathcal{B}=\left\{(1,2,0)^{t},(2,1,2)^{t},(3,1,1)^{t}\right\}$ is a basis of \mathbb{R}^{3}.
(b) Find the co-ordinate vector of $v=(1,2,3)^{t}$ with respect to the basis \mathcal{B}.
(c) Let $\mathcal{B}^{\prime}=\left\{(0,1,0)^{t},(1,0,1)^{t},(2,1,0)^{t}\right.$ be another basis of \mathbb{R}^{3}. Find the change of basis matrix relating \mathcal{B} and \mathcal{B}^{\prime}.
$(4+6+10)$
(6) Let $P_{3}(\mathbb{R})$ be the space of all real polynomials of degree less than or equal to 3 . Consider the ordered basis $\mathcal{B}=\left\{1, x, x^{2}, x^{3}\right\}$ of $P_{3}(\mathbb{R})$. Define the linear operator $T: P_{3}(\mathbb{R}) \longrightarrow P_{3}(\mathbb{R})$ by $T(1)=1, T(x)=1+x, T\left(x^{2}\right)=(1+x)^{2}, T\left(x^{3}\right)=(1+x)^{3}$ on the basis elements.
(a) Find the matrix of T with respect to the basis \mathcal{B}.
(b) Prove that T is invertible.
(c) Find the matrix of T^{-1} with respect to the basis \mathcal{B}.

